Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 117: 20-35, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38157948

RESUMO

BACKGROUND: Cerebral malaria (CM) is a fatal neuroinflammatory syndrome caused (in humans) by the protozoa Plasmodium (P.) falciparum. Glial cell activation is one of the mechanisms that contributes to neuroinflammation in CM. RESULT: By studying a mouse model of CM (caused by P. berghei ANKA), we describe that the induction of autophagy promoted p21-dependent senescence in astrocytes and that CXCL-10 was part of the senescence-associated secretory phenotype. Furthermore, p21 expression was observed in post-mortem brain and peripheral blood samples from patients with CM. Lastly, we found that the depletion of senescent astrocytes with senolytic drugs abrogated inflammation and protected mice from CM. CONCLUSION: Our data provide evidence for a novel mechanism through which astrocytes could be involved in the neuropathophysiology of CM. p21 gene expression in blood cell and an elevated plasma CXCL-10 concentration could be valuable biomarkers of CM in humans. In the end, we believe senolytic drugs shall open up new avenues to develop newer treatment options.


Assuntos
Malária Cerebral , Humanos , Animais , Camundongos , Doenças Neuroinflamatórias , Astrócitos , Senoterapia , Autofagia
2.
J Extracell Vesicles ; 12(12): e12390, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38117000

RESUMO

Nasopharyngeal carcinoma-derived small extracellular vesicles (NPCSEVs) have an immunosuppressive impact on the tumour microenvironment. In this study, we investigated their influence on the generation of tolerogenic dendritic cells and the potential involvement of the galectin-9 (Gal9) they carry in this process. We analysed the phenotype and immunosuppressive properties of NPCSEVs and explored the ability of DCs exposed to NPCSEVs (NPCSEV-DCs) to regulate T cell proliferation. To assess their impact at the pathophysiological level, we performed real-time fluorescent chemoattraction assays. Finally, we analysed phenotype and immunosuppressive functions of NPCSEV-DCs using a proprietary anti-Gal9 neutralising antibody to assess the role of Gal9 in this effect. We described that NPCSEV-DCs were able to inhibit T cell proliferation despite their mature phenotype. These mature regulatory DCs (mregDCs) have a specific oxidative metabolism and secrete high levels of IL-4. Chemoattraction assays revealed that NPCSEVs could preferentially recruit NPCSEV-DCs. Finally, and very interestingly, the reduction of the immunosuppressive function of NPCSEV-DCs using an anti-Gal9 antibody clearly suggested an important role for vesicular Gal9 in the induction of mregDCs. These results revealed for the first time that NPCSEVs promote the emergence of mregDCs using a galectin-9 dependent mechanism and open new perspectives for antitumour immunotherapy targeting NPCSEVs.


Assuntos
Vesículas Extracelulares , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo , Células Dendríticas , Galectinas/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Microambiente Tumoral
3.
Front Immunol ; 14: 1267279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098486

RESUMO

Background: Pancreatic adenocarcinoma (PDAC) is a devastating disease with an urgent need for therapeutic innovation. Immune checkpoint inhibition has shown promise in a variety of solid tumors, but most clinical trials have failed to demonstrate clinical efficacy in PDAC. This low efficacy is partly explained by a highly immunosuppressive microenvironment, which dampens anti-tumor immunity through the recruitment or induction of immunosuppressive cells, particularly regulatory T cells (Tregs). In this context, our laboratory has developed a novel immunotherapeutic strategy aimed at inhibiting the suppressive activity of Tregs, based on a patented (EP3152234B1) monoclonal antibody (mAb) targeting galectin-9 (LGALS9). Materials and methods: CD4+ conventional T cells (TCD4 or Tconv), Treg ratio, and LGALS9 expression were analyzed by immunohistochemistry (IHC) and cytometry in blood and pancreas of K-rasLSL.G12D/+;Pdx-1-Cre (KC) and K-rasWildType (WT);Pdx1-Cre (WT) mice aged 4-13 months. Pancreatic intraepithelial neoplasm (PanIN) progression and grade were quantified using FIJI software and validated by pathologists. The anti-galectin-9 mAb was validated for its use in mice on isolated murine C57BL/6 Treg by immunofluorescence staining and cytometry. Its specificity and functionality were validated in proliferation assays on rLGALS9-immunosuppressed murine Tconv and in suppression assays between murine Treg and Tconv. Finally, 2-month-old KC mice were treated with anti-LGALS9 and compared to WT mice for peripheral and infiltrating TCD4, Treg, and PanIN progression. Results: IHC and cytometry revealed a significant increase in LGALS9 expression and Treg levels in the blood and pancreas of KC mice proportional to the stages of precancerous lesions. Although present in WT mice, LGALS9 is expressed at a basal level with low and restricted expression that increases slightly over time, while Treg cells are few in number in their circulation and even absent from the pancreas over time. Using our anti-LGALS9 mAb in mice, it is shown that (i) murine Treg express LGALS9, (ii) the mAb could target and inhibit recombinant murine LGALS9, and (iii) neutralize murine Treg suppressive activity. Finally, the anti-LGALS9 mAb in KC mice reduced (i) LGALS9 expression in pancreatic cancer cells, (ii) the Treg ratio, and (iii) the total surface area and grade of PanIN. Conclusion: We demonstrate for the first time that an anti-LGALS9 antibody, by specifically targeting endogenous LGALS9 tumor and exogenous LGALS9 produced by Treg, was able to limit the progression of pancreatic neoplastic lesions in mice, opening up new prospects for its use as an immunotherapeutic tool in PDAC.


Assuntos
Adenocarcinoma , Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Galectinas , Imunoterapia , Microambiente Tumoral
4.
FEBS Lett ; 597(18): 2301-2315, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37468447

RESUMO

MET is a receptor tyrosine kinase that is activated in many cancers through various mechanisms. MET exon 14 (Ex14) skipping occurs in 3% of nonsmall cell lung tumors. However, the contribution of the regulatory sites lost upon this skipping, which include a phosphorylated serine (S985) and a binding site for the E3 ubiquitin ligase CBL (Y1003), remains elusive. Sequencing of 2808 lung tumors revealed 71 mutations leading to MET exon 14 skipping and three mutations affecting Y1003 or S985. In addition, MET exon 14 skipping and MET Y1003F induced similar transcriptional programs, increased the activation of downstream signaling pathways, and increased cell mobility. Therefore, the MET Y1003F mutation is able to fully recapitulate responses induced by MET exon 14 skipping, suggesting that loss of the CBL binding site is the main contributor of cell transformation induced by MET Ex14 mutations.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-met , Humanos , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Neoplasias Pulmonares/genética , Mutação , Éxons/genética , Sítios de Ligação , Ubiquitinas/genética , Ligases/metabolismo
5.
Cells ; 12(9)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37174660

RESUMO

The gut microbiota is now considered as a key player in the development of metabolic dysfunction. Therefore, targeting gut microbiota dysbiosis has emerged as a new therapeutic strategy, notably through the use of live gut microbiota-derived biotherapeutics. We previously highlighted the anti-inflammatory abilities of two Parabacteroides distasonis strains. We herein evaluate their potential anti-obesity abilities and show that the two strains induced the secretion of the incretin glucagon-like peptide 1 in vitro and limited weight gain and adiposity in obese mice. These beneficial effects are associated with reduced inflammation in adipose tissue and the improvement of lipid and bile acid metabolism markers. P. distasonis supplementation also modified the Actinomycetota, Bacillota and Bacteroidota taxa of the mice gut microbiota. These results provide better insight into the capacity of P. distasonis to positively influence host metabolism and to be used as novel source of live biotherapeutics in the treatment and prevention of metabolic-related diseases.


Assuntos
Microbioma Gastrointestinal , Obesidade , Animais , Camundongos , Obesidade/terapia , Obesidade/metabolismo , Bacteroidetes , Tecido Adiposo/metabolismo
6.
Appl Environ Microbiol ; 89(4): e0209122, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36939324

RESUMO

Yersinia pestis (the agent of flea-borne plague) must obstruct the flea's proventriculus to maintain transmission to a mammalian host. To this end, Y. pestis must consolidate a mass that entrapped Y. pestis within the proventriculus very early after its ingestion. We developed a semiautomated fluorescent image analysis method and used it to monitor and compare colonization of the flea proventriculus by a fully competent flea-blocking Y. pestis strain, a partially competent strain, and a noncompetent strain. Our data suggested that flea blockage results primarily from the replication of Y. pestis trapped in the anterior half of the proventriculus. However, consolidation of the bacteria-entrapping mass and colonization of the entire proventricular lumen increased the likelihood of flea blockage. The data also showed that consolidation of the bacterial mass is not a prerequisite for colonization of the proventriculus but allowed Y. pestis to maintain itself in a large flea population for an extended period of time. Taken as the whole, the data suggest that a strategy targeting bacterial mass consolidation could significantly reduce the likelihood of Y. pestis being transmitted by fleas (due to gut blockage), but also the possibility of using fleas as a long-term reservoir. IMPORTANCE Yersinia pestis (the causative agent of plague) is one of the deadliest bacterial pathogens. It circulates primarily among rodent populations and their fleas. Better knowledge of the mechanisms leading to the flea-borne transmission of Y. pestis is likely to generate strategies for controlling or even eradicating this bacillus. It is known that Y. pestis obstructs the flea's foregut so that the insect starves, frantically bites its mammalian host, and regurgitates Y. pestis at the bite site. Here, we developed a semiautomated fluorescent image analysis method and used it to document and compare foregut colonization and disease progression in fleas infected with a fully competent flea-blocking Y. pestis strain, a partially competent strain, and a noncompetent strain. Overall, our data provided new insights into Y. pestis' obstruction of the proventriculus for transmission but also the ecology of plague.


Assuntos
Peste , Sifonápteros , Yersinia pestis , Animais , Sifonápteros/microbiologia , Peste/microbiologia , Proventrículo , Microscopia , Insetos Vetores/microbiologia , Mamíferos
7.
PLoS Pathog ; 19(3): e1011192, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36888688

RESUMO

Progression of tuberculosis is tightly linked to a disordered immune balance, resulting in inability of the host to restrict intracellular bacterial replication and its subsequent dissemination. The immune response is mainly characterized by an orchestrated recruitment of inflammatory cells secreting cytokines. This response results from the activation of innate immunity receptors that trigger downstream intracellular signaling pathways involving adaptor proteins such as the TIR-containing adaptor protein (Tirap). In humans, resistance to tuberculosis is associated with a loss-of-function in Tirap. Here, we explore how genetic deficiency in Tirap impacts resistance to Mycobacterium tuberculosis (Mtb) infection in a mouse model and ex vivo. Interestingly, compared to wild type littermates, Tirap heterozygous mice were more resistant to Mtb infection. Upon investigation at the cellular level, we observed that mycobacteria were not able to replicate in Tirap-deficient macrophages compared to wild type counterparts. We next showed that Mtb infection induced Tirap expression which prevented phagosomal acidification and rupture. We further demonstrate that the Tirap-mediated anti-tuberculosis effect occurs through a Cish-dependent signaling pathway. Our findings provide new molecular evidence about how Mtb manipulates innate immune signaling to enable intracellular replication and survival of the pathogen, thus paving the way for host-directed approaches to treat tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Camundongos , Animais , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Concentração de Íons de Hidrogênio , Glicoproteínas de Membrana/metabolismo
8.
Cell Mol Life Sci ; 79(12): 615, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36460928

RESUMO

Although hepatitis E virus (HEV) is the major leading cause of enterically transmitted viral hepatitis worldwide, many gaps remain in the understanding of the HEV lifecycle. Notably, viral factories induced by HEV have not been documented yet, and it is currently unknown whether HEV infection leads to cellular membrane modeling as many positive-strand RNA viruses. HEV genome encodes the ORF1 replicase, the ORF2 capsid protein and the ORF3 protein involved in virion egress. Previously, we demonstrated that HEV produces different ORF2 isoforms including the virion-associated ORF2i form. Here, we generated monoclonal antibodies that specifically recognize the ORF2i form and antibodies that recognize the different ORF2 isoforms. One antibody, named P1H1 and targeting the ORF2i N-terminus, recognized delipidated HEV particles from cell culture and patient sera. Importantly, AlphaFold2 modeling demonstrated that the P1H1 epitope is exposed on HEV particles. Next, antibodies were used to probe viral factories in HEV-producing/infected cells. By confocal microscopy, we identified subcellular nugget-like structures enriched in ORF1, ORF2 and ORF3 proteins and viral RNA. Electron microscopy analyses revealed an unprecedented HEV-induced membrane network containing tubular and vesicular structures. We showed that these structures are dependent on ORF2i capsid protein assembly and ORF3 expression. An extensive colocalization study of viral proteins with subcellular markers, and silencing experiments demonstrated that these structures are derived from the endocytic recycling compartment (ERC) for which Rab11 is a central player. Hence, HEV hijacks the ERC and forms a membrane network of vesicular and tubular structures that might be the hallmark of HEV infection.


Assuntos
Vírus da Hepatite E , Humanos , Vírus da Hepatite E/genética , Compartimentos de Replicação Viral , Proteínas do Capsídeo , Transporte Biológico , Anticorpos Monoclonais
9.
Nucleic Acids Res ; 49(19): 11022-11037, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34634811

RESUMO

Nonsense-mediated mRNA decay (NMD) is a highly regulated quality control mechanism through which mRNAs harboring a premature termination codon are degraded. It is also a regulatory pathway for some genes. This mechanism is subject to various levels of regulation, including phosphorylation. To date only one kinase, SMG1, has been described to participate in NMD, by targeting the central NMD factor UPF1. Here, screening of a kinase inhibitor library revealed as putative NMD inhibitors several molecules targeting the protein kinase AKT1. We present evidence demonstrating that AKT1, a central player in the PI3K/AKT/mTOR signaling pathway, plays an essential role in NMD, being recruited by the UPF3X protein to phosphorylate UPF1. As AKT1 is often overactivated in cancer cells and as this should result in increased NMD efficiency, the possibility that this increase might affect cancer processes and be targeted in cancer therapy is discussed.


Assuntos
Códon sem Sentido , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Proto-Oncogênicas c-akt/genética , RNA Helicases/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Transativadores/genética , Proliferação de Células , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Biblioteca Gênica , Genes Reporter , Células HEK293 , Células HeLa , Humanos , Luciferases/genética , Luciferases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transativadores/metabolismo
11.
PLoS Pathog ; 16(5): e1008106, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32463830

RESUMO

Toxoplasma gondii possesses an armada of secreted virulent factors that enable parasite invasion and survival into host cells. These factors are contained in specific secretory organelles, the rhoptries, micronemes and dense granules that release their content upon host cell recognition. Dense granules are secreted in a constitutive manner during parasite replication and play a crucial role in modulating host metabolic and immune responses. While the molecular mechanisms triggering rhoptry and microneme release upon host cell adhesion have been well studied, constitutive secretion remains a poorly explored aspect of T. gondii vesicular trafficking. Here, we investigated the role of the small GTPase Rab11A, a known regulator of exocytosis in eukaryotic cells. Our data revealed an essential role of Rab11A in promoting the cytoskeleton driven transport of dense granules and the release of their content into the vacuolar space. Rab11A also regulates transmembrane protein trafficking and localization during parasite replication, indicating a broader role of Rab11A in cargo exocytosis at the plasma membrane. Moreover, we found that Rab11A also regulates extracellular parasite motility and adhesion to host cells. In line with these findings, MIC2 secretion was altered in Rab11A-defective parasites, which also exhibited severe morphological defects. Strikingly, by live imaging we observed a polarized accumulation of Rab11A-positive vesicles and dense granules at the apical pole of extracellular motile and invading parasites suggesting that apically polarized Rab11A-dependent delivery of cargo regulates early secretory events during parasite entry into host cells.


Assuntos
Vesículas Transportadoras/metabolismo , Vacúolos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Adesão Celular , Linhagem Celular , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Humanos , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Parasitos/metabolismo , Transporte Proteico , Proteínas de Protozoários , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia
12.
Nat Commun ; 11(1): 1509, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198346

RESUMO

Nonsense mutations cause about 10% of genetic disease cases, and no treatments are available. Nonsense mutations can be corrected by molecules with nonsense mutation readthrough activity. An extract of the mushroom Lepista inversa has recently shown high-efficiency correction of UGA and UAA nonsense mutations. One active constituent of this extract is 2,6-diaminopurine (DAP). In Calu-6 cancer cells, in which TP53 gene has a UGA nonsense mutation, DAP treatment increases p53 level. It also decreases the growth of tumors arising from Calu-6 cells injected into immunodeficient nude mice. DAP acts by interfering with the activity of a tRNA-specific 2'-O-methyltransferase (FTSJ1) responsible for cytosine 34 modification in tRNATrp. Low-toxicity and high-efficiency UGA nonsense mutation correction make DAP a good candidate for the development of treatments for genetic diseases caused by nonsense mutations.


Assuntos
2-Aminopurina/análogos & derivados , 2-Aminopurina/farmacologia , Códon sem Sentido/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Mutação/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes p53/genética , Células HEK293 , Células HeLa , Humanos , Lepisma/química , Camundongos , Camundongos Nus , RNA de Transferência/genética , tRNA Metiltransferases/metabolismo
13.
Nanoscale ; 11(21): 10320-10328, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31106790

RESUMO

Precise localization and biophysical characterization of cellular structures is a key to the understanding of biological processes happening both inside the cell and at the cell surface. Atomic force microscopy is a powerful tool to study the cell surface - topography, elasticity, viscosity, interactions - and also the viscoelastic behavior of the underlying cytoplasm, cytoskeleton or the nucleus. Here, we demonstrate the ability of atomic force microscopy to also map and characterize organelles and microorganisms inside cells, at the nanoscale, by combining stiffness tomography with super-resolution fluorescence and electron microscopy. By using this correlative approach, we could both identify and characterize intracellular compartments. The validation of this approach was performed by monitoring the stiffening effect according to the metabolic status of the mitochondria in living cells in real-time.


Assuntos
Membrana Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Citoplasma/ultraestrutura , Microscopia de Força Atômica , Microtúbulos/ultraestrutura , Elasticidade , Células HeLa , Humanos , Viscosidade
14.
Biol Cell ; 111(3): 67-77, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30680759

RESUMO

BACKGROUND: Bacterial invasion covers two steps: adhesion and entry per se. The cell signalling response is triggered upon pathogen interaction at the cell surface. This response continues when the pathogen is internalised. It is likely that these two steps activate different molecular machineries. So far, it has not been possible to easily follow in physiological conditions these events separately. We thus developed an approach to uncouple adhesion from entry using atomic force microscopy (AFM)-driven force and fluorescence measurements. RESULTS: We report nanometric-scale, high-resolution, functional dynamic measurements of bacterial interaction with the host cell surface using photonic and adhesion force analyses. We describe how to achieve a precise monitoring of iterative cell-bacterium interactions to analyse host cell signalling responses to infection. By applying this method to Yersinia pseudotuberculosis, we first unveil glycosylphosphatidylinositol-anchored protein domains recruitment to the bacterium cell surface binding site and concomitant cytoskeleton rearrangements using super-resolution fluorescence microscopy. Second, we demonstrate the feasibility of monitoring post-translationally modified proteins, for example, via ubiquitylation, during the first step of infection. CONCLUSION: We provide an approach to discriminate between cellular signalling response activated at the plasma membrane during host-pathogen interaction and that is triggered during the internalisation of the pathogen within the cell. SIGNIFICANCE: This approach adds to the technological arsenal to better understand and fight against pathogens and beyond the scope of microbiology to address conceptual issues of cell surface signalling.


Assuntos
Membrana Celular/metabolismo , Citosol/metabolismo , Yersinia pseudotuberculosis/metabolismo , Actinas/metabolismo , Adsorção , Sítios de Ligação , Adesão Celular , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Polimerização , Processamento de Proteína Pós-Traducional , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitinação
15.
Lung Cancer ; 125: 57-67, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30429039

RESUMO

BACKGROUND: Five to 20% of metastatic EGFR-mutated non-small cell lung cancers (NSCLC) develop acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI) through MET amplification. The effects of MET amplification on tumor and patient phenotype remain unknown. METHODS: We investigated,in vitro and in vivo, the impact of MET amplification on the biological properties of the HCC827 cell line, derived from an EGFR-mutated NSCLC. We further evaluated the time to new metastases after EGFR-TKI progression in EGFR-mutated NSCLC, exhibiting MET amplification or high MET overexpression. RESULTS: MET amplification significantly enhanced proliferation, anchorage independent growth, anoikis resistance, migration, and induced an epithelial to mesenchymal transition. In vivo, MET amplification significantly increased the tumor growth and metastatic spread. Treatment with a MET-TKI reversed this aggressive phenotype. We found that EGFR-mutated NSCLC patients exhibiting MET amplification on a re-biopsy, performed after EGFR-TKI progression, displayed a shorter time to new metastases after EGFR-TKI progression than patients with high MET overexpression but no MET amplification. CONCLUSION: MET amplification increases metastatic spread even in the context of an already pre-existing strong driver mutation such as EGFR mutation. These results prompt development of therapeutic strategies aiming at preventing emergence of MET amplification.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Amplificação de Genes/genética , Neoplasias Pulmonares/genética , Metástase Neoplásica/genética , Proteínas Proto-Oncogênicas c-met/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Camundongos , Camundongos SCID , Mutação/genética , Metástase Neoplásica/patologia , Inibidores de Proteínas Quinases/uso terapêutico
16.
Front Microbiol ; 9: 2258, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333800

RESUMO

The heparin-binding hemagglutinin adhesin (HBHA) is an important virulence factor of Mycobacterium tuberculosis. It is a surface-displayed protein that serves as an adhesin for non-phagocytic cells and is involved in extra-pulmonary dissemination of the tubercle bacillus. It is also an important latency antigen useful for the diagnosis of latently M. tuberculosis-infected individuals. Using fluorescence time-lapse microscopy on mycobacteria that produce HBHA-green fluorescent protein chimera, we show here that HBHA can be found at two different locations and dynamically alternates between the mycobacterial surface and the interior of the cell, where it participates in the formation of intracytosolic lipid inclusions (ILI). Compared to HBHA-producing mycobacteria, HBHA-deficient mutants contain significantly lower amounts of ILI when grown in vitro or within macrophages, and the sizes of their ILI are significantly smaller. Lipid-binding assays indicate that HBHA is able to specifically bind to phosphatidylinositol and in particular to 4,5 di-phosphorylated phosphatidylinositol, but not to neutral lipids, the main constituents of ILI. HBHA derivatives lacking the C-terminal methylated, lysine-rich repeat region fail to bind to these lipids and these derivatives also fail to complement the phenotype of HBHA-deficient mutants. These studies indicate that HBHA is a moonlighting protein that serves several functions depending on its location. When surface exposed, HBHA serves as an adhesin, and when intracellularly localized, it participates in the generation of ILI, possibly as a cargo to transport phospholipids from the plasma membrane to the ILI in the process of being formed.

17.
FEBS J ; 285(23): 4394-4412, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30338930

RESUMO

The extracellular matrix (ECM) is essential to provide mechanical support to tissues but is also a bioactive edifice which controls cell behavior. Cell signaling generated by ECM components through integrin-mediated contacts, modulates cell biological activity. In addition, by sequestrating or releasing growth factors, the ECM is an active player of physiological and pathological processes such as vascular development. EGFL7 is mainly expressed during blood vessel development and is deposited in the ECM after secretion by endothelial cells. While EGFL7 is known to control various endothelial cell molecular mechanisms [i.e., the repression of endothelial-derived lysyl oxidase (LOX) enzyme, the regulation of the Notch pathway, and the expression of leukocyte adhesion molecules and of RHOA by endothelial cells], it is not established whether EGFL7 functions when bound to the ECM. Here, we show that microfibrillar-associated glycoprotein-1 (MAGP-1) and fibronectin drive the deposition of EGFL7 into both fibers and individual aggregates in endothelial ECM. Although EGFL7 does not need to be docked into the ECM to control endothelial adhesion molecule expression, the ECM accumulation of EGFL7 is required for its regulation of LOX activity and of HEY2 expression along the Notch pathway. The interaction of EGFL7 with MAGP-1 is necessary for LOX activity repression by EGFL7 while it does not participate in the control of the Notch pathway by this protein. Altogether, this study highlights the roles played by EGFL7 in controlling various endothelial molecular mechanisms upon its localization and shows how the ECM can modulate its functions.


Assuntos
Adesão Celular , Proteínas Contráteis/metabolismo , Fatores de Crescimento Endotelial/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação ao Cálcio , Família de Proteínas EGF , Humanos , Proteína-Lisina 6-Oxidase/metabolismo , Fatores de Processamento de RNA , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo
18.
EMBO Rep ; 19(1): 29-42, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141986

RESUMO

The interaction of Mycobacterium tuberculosis (Mtb) with pulmonary epithelial cells is critical for early stages of bacillus colonization and during the progression of tuberculosis. Entry of Mtb into epithelial cells has been shown to depend on F-actin polymerization, though the molecular mechanisms are still unclear. Here, we demonstrate that mycobacterial uptake into epithelial cells requires rearrangements of the actin cytoskeleton, which are regulated by ADP-ribosylation factor 1 (Arf1) and phospholipase D1 (PLD1), and is dependent on the M3 muscarinic receptor (M3R). We show that this pathway is controlled by Arf GTPase-activating protein 1 (ArfGAP1), as its silencing has an impact on actin cytoskeleton reorganization leading to uncontrolled uptake and replication of Mtb. Furthermore, we provide evidence that this pathway is critical for mycobacterial entry, while the cellular infection with other pathogens, such as Shigella flexneri and Yersinia pseudotuberculosis, is not affected. Altogether, these results reveal how cortical actin plays the role of a barrier to prevent mycobacterial entry into epithelial cells and indicate a novel role for ArfGAP1 as a restriction factor of host-pathogen interactions.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/genética , Proteínas Ativadoras de GTPase/genética , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/patogenicidade , Alvéolos Pulmonares/metabolismo , Células A549 , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Citoesqueleto de Actina/microbiologia , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Humanos , Mycobacterium tuberculosis/fisiologia , Fosfolipase D/genética , Fosfolipase D/metabolismo , Polimerização , Alvéolos Pulmonares/microbiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Shigella flexneri/fisiologia , Transdução de Sinais , Especificidade da Espécie , Yersinia pseudotuberculosis/fisiologia
19.
J Cell Sci ; 130(18): 3009-3022, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28743738

RESUMO

Nonsense-mutation-containing messenger ribonucleoprotein particles (mRNPs) transit through cytoplasmic foci called P-bodies before undergoing nonsense-mediated mRNA decay (NMD), a cytoplasmic mRNA surveillance mechanism. This study shows that the cytoskeleton modulates transport of nonsense-mutation-containing mRNPs to and from P-bodies. Impairing the integrity of cytoskeleton causes inhibition of NMD. The cytoskeleton thus plays a crucial role in NMD. Interestingly, disruption of actin filaments results in both inhibition of NMD and activation of premature termination codon (PTC) readthrough, while disruption of microtubules causes only NMD inhibition. Activation of PTC readthrough occurs concomitantly with the appearance of cytoplasmic foci containing UPF proteins and mRNAs with nonsense mutations but lacking the P-body marker DCP1a. These findings demonstrate that in human cells, PTC readthrough occurs in novel 'readthrough bodies' and requires the presence of UPF proteins.


Assuntos
Códon sem Sentido/genética , Citoplasma/metabolismo , RNA Helicases/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Linhagem Celular , Citocalasina D/farmacologia , Citoplasma/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Depsipeptídeos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Humanos , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Degradação do RNAm Mediada por Códon sem Sentido/genética , Biossíntese de Proteínas/efeitos dos fármacos , Ribonucleoproteínas/metabolismo
20.
Cytometry A ; 91(10): 983-994, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28544095

RESUMO

Tuberculosis (TB) is still a major global threat, killing more than one million persons each year. With the constant increase of Mycobacterium tuberculosis strains resistant to first- and second-line drugs, there is an urgent need for the development of new drugs to control the propagation of TB. Although screenings of small molecules on axenic M. tuberculosis cultures were successful for the identification of novel putative anti-TB drugs, new drugs in the development pipeline remains scarce. Host-directed therapy may represent an alternative for drug development against TB. Indeed, M. tuberculosis has multiple specific interactions within host phagocytes, which may be targeted by small molecules. In order to enable drug discovery strategies against microbes residing within host macrophages, we developed multiple fluorescence-based HT/CS phenotypic assays monitoring the intracellular replication of M. tuberculosis as well as its intracellular trafficking. What we propose here is a population-based, multi-parametric analysis pipeline that can be used to monitor the intracellular fate of M. tuberculosis and the dynamics of cellular events such as phagosomal maturation (acidification and permeabilization), zinc poisoning system or lipid body accumulation. Such analysis allows the quantification of biological events considering the host-pathogen interplay and may thus be derived to other intracellular pathogens. © 2017 International Society for Advancement of Cytometry.


Assuntos
Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Animais , Antituberculosos/farmacologia , Bioensaio/métodos , Células Cultivadas , Descoberta de Drogas/métodos , Fluorescência , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Tuberculose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...